Complex Numbers

Statement -1: If $$z_1$$ and $$z_2$$ are two complex numbers such that $$|z_1| = |z_2| + |z_1 - z_2|$$, then $$Im \left ( \frac{z_1}{z_2} \right )=0$$
If $$z_1 = 5 + 12i$$  &   $$|z_2| = 4$$ then

IF $$z_1 = \sqrt 3 + i \sqrt 3$$ and $$z_2 = \sqrt 3 +i $$ then the complex number $$\frac {z_1}{z_2}$$ lies in the quadrant number :
Statement -1: If $$z_1$$ and $$z_2$$ are two complex numbers such that $$|z_1| = |z_2| + |z_1 - z_2|$$, then $$Im \left ( \frac{z_1}{z_2} \right )=0$$
IF $$z_1 = \sqrt 3 + i \sqrt 3$$ and $$z_2 = \sqrt 3 +i $$ then the complex number $$\frac {z_1}{z_2}$$ lies in the quadrant number :