Lines and Triangles

In a triangle ABC, if $$B={ 30 }^{ 0 }$$ and $$c=\sqrt { 3 } b$$, then A can be equal to :-
In the adjoining figure, it is given that  $$\angle A={ 60 }^{ },$$  $$CE\parallel BA$$  and  $$\angle ECD={ 65 }^{ }.$$  Then  $$\angle ACB $$  equals.
Find the area of an isosceles triangle with base $$10\ cm$$ and perimeter $$36\ cm$$
If  D is the midpoint of the side Bc of a triangle ABC, then prove that $$\vec { AB } +\vec { AC } =\vec { 2AD } $$
If $$\Delta ABC  \sim  \Delta$$ PQR, perimeter of $$\Delta$$ ABC 32 cm, perimeter of $$\Delta$$ PQR = 48 cm and PR = 6cm, then find the length of AC