Relations and Functions

Answer the questions on the basis of the function given below :
$$\displaystyle f:(0, \infty) \rightarrow (-\frac {\pi}{2}, \frac {\pi}{2})$$ be defined as, $$\displaystyle f(x) = arc \: \tan( \: x)$$
The total surface area, $$\displaystyle S\ cm^2$$, of a cylinder of radius r cm and height h cm, is given by the formula.
$$\displaystyle S=2\pi rh+2\pi r^2$$
Let a relation R be defined by
$$\displaystyle R= \left \{ \left ( 4,5 \right ), \left ( 1,4 \right ), \left ( 4,6 \right ), \left ( 7,6 \right ), \left ( 3,7 \right ) \right \}.$$ Find
$$P(x)$$ be polynomial of degree at most $$5$$ which leaves remainders $$-1$$ and $$1$$ upon division by $$(x-1)^{3}$$ and $$(x+1)^{3}$$ respectively
In the equation $$y=kx+3$$, $$k$$ is a constant. If $$y=17$$ when $$x=2$$, what is the value of $$y$$ when $$x=4$$?