Theory of Equations

Find the equation whose root are square of the root are $${x^3} - 2{x^2} - x + 5 = 0$$

$$|x - 3| + 2|x + 1| = 4$$. Find $$x$$?
If $$x - 2$$ and $$x - \dfrac{1}{2}$$ both are the factors of the polynomial $$nx^2 - 5x + m$$, then show that $$m = n = 2$$.
The least integral value of $$x$$ for which $$33 - x(2 + 3x) > 0$$ is
Simplify $$\sqrt { 1+{ \left( \cfrac { { x }^{ 4 } }{ -2{ x }^{ 2 } }  \right)  }^{ 2 } } $$